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Energy eigenstates of magnetostatic waves and oscillations
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Effect of excitation of magnetostatic oscillations in a ferrite resonator by the microwave magnetic field was
a subject of many publications of more than the last 40 years. The most interesting multiresonance spectrum of
absorption peaks one can observe experimentally is a case of disk-form small ferrite resonators. It is shown in
this paper that such small ferrite resonators can be considered as “artificial molecular structures” with prop-
erties characterized by energy eigenstates of magnetostatic oscillations. A special interest in these properties
may be found in the field of microwave artificial composite materials.
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[. INTRODUCTION a result of formulation of theenergy spectral problerm a
ferrite spheroid and, therefore, cannot be used to define the
Some quantum mechanical effects are readily simulateénergetic levels of MS oscillations.
by sufficiently flat microwave resonators since the Sehro The situation can be completely different when non-
dinger and the Helmholtz equations are equivalent in twaspherical(nonellipsoidal, more preciselyerrite samples are
dimensiongsee, for exampld,1]). The question, however, is used. In a case of small ferrite disks, for example, placed into
if one can use some specific properties of microwave resaa region of theuniform magnetic field, a long series of os-
nators not for simulation, but to obtain fundamentally newcillating MS modes are excited 1,12. These experimental
physical effects. A special interest in these new effects mayesults demonstrate that magnetosatic modes actually diago-
be found in the field of artificial composite materials. Re-nalize the total magnetic energy. We do not have, however,
cently, we put forward a concept of artificial microwave bi- the proper explanation of so rich a spectrum of the absorp-
anisotropic materials based on a composition of ferrite magtion peaks. The role of nonuniform internal dc magnetic field
netostatic (MS) resonators with special-form surface in disk-shaped samples was demonstrated in experiments
metalizations—the magnetostatically controlled bianisotro{13]. Schianann tried to explain the mechanism of conver-
pic materialfMCBMSs) [2,3]. The MCBMs, being local tem- sion of electromagnetic power into spin-wave power based
porally dispersive bianisotropic media, demonstrate newon the fact that the effective wavelength of the spin waves
electromagnetic properties unknown for any natural materibecomes large in the presence of a suitably nonuniformed dc
als[3-5]. magnetic field 14]. He found a certain resemblance between
Fundamental principles of macroscopic electrodynamicequation of motion for the magnetization and the Sehro
of bianisotropic media should arise from the microscopicdinger equation. His classical approach, however, cannot
point of view[5]. It is supposed that the main characteristicsgive any explanations about an excitation of a rich spectrum,
of a ferrite bianisotropic particléBAP) should be based on one can observe in experiments with disk-form samples. We
the effect of the MS oscillations in a ferrite body coupleddo not have an initial formulation of the energy spectral
with the surface electric current oscillations on a region ofproblem in this case.
metallization[2]. Recently, this effect of magnetoelectric  To explain the effect of coupling between the electromag-
coupling in a ferromagnetic resonator with a surface metalnetic field and very small ferrite resonatofzarticles the
lization has been experimentally verifigd,7]. Now, in the  mathematical apparatus, similar to the quantum mechanical
attempts to solve an excitation problem for characterizatiompparatus and based on the theory of linear operaidiis
of a multiresonance regime in a ferrite BAP, we are facecdhas to be used. With the use of a simple model of an “open
with the fact that even an excitation problem for MS in aferrite disk,” we will show in this paper that magnetostatic
“pure” (without a surface metallizatigrierrite resonator is  oscillations in a normally magnetized sample can be de-
rather far from completion. scribed byeigenfunctions with stationary energy eigenstates
Effect of excitation of MS oscillations in a ferrite resona- We will have a possibility to formulate an energy spectral
tor by the rf magnetic field was a subject of many publica-problem and to obtain a discrete spectrum of energy levels.
tions of more than the last 40 years. It is well known that theSo an “artificial magnetic atom/molecule” with new prop-
necessary condition for excitation of multiple MS modes inerties becomes a subject of investigations. As a subject for
the ferrite ellipsoids(or the ferrite sphere, as a particular future research, the role of the nonuniform dc magnetic field
case is that the exciting rf magnetic field at the sample bemay be analyzed as a potential-energy perturbation of an
essentiallynonuniform[8,9]. In this case, however, one can initial discrete spectrum in a ferrite disk. Excitation of MS
see just only a few absorption peaks in a spectrum. In higscillations by the rf magnetic field is supposed to be con-
theory of MS oscillations in a ferrite spheroid, Walker had sidered as a time-dependent perturbation.
shown, for the first time, that orthogonality relations between In a case of a ferrite BAP the energetic levels should be
different modes of the rf magnetization takes plddé)]. defined by coupled oscillations of the rf magnetization and
These orthogonality relations, however, were not obtained athe rf surface electric current. The aim of our future publica-
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s plane surfaces of a disk. In a case of such assumptions, we
° ?ggg exclude, in fact, an influence of the edge regions. This does
; . not correspond to the exact electrodynamical conditions, but

TR TS,
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N may give, nevertheless, very satisfactory results. It is clear
that the more elongated form of a cross section of a structure,
the less an influence of the edge regions we have. In optical
waveguides with a rectangular form of a cross section, the

FIG. 1. Ferrite disk with a small thickness/diameter ratio. ~Method of separation of variables gives the better results of

calculations, the less ratio thickness/widfthe so-called

tions is an analysis of such a ferrite BAfat contains two “Marcatili approximation” [18]). One can expect that in our
subsystems and can be called conventionally as an “artificia®nalysis of an “open ferrite disk,” a structure with a small
magnetoelectric molecular structusebased on the present axial ratio is more preferable. In connection with our as-
analysis of eigenfunctions and energy eigenvalues in a ferritumption, it is relevant to point out that in the experiments
disk. One can expect to have new physical effects in theskl1,12 we have a multiresonance regime of MS modes just
particles. In particular, recent qualitative investigation dem-n ferrite disks with a small thickness to diameter raap-

onstrates interesting symmetry properties of a ferrite BAFProximately 1/15-1/20D
[16]. Based on our model, we will consider a structure shown

in Fig. 1 as a section of an open cylindrical MS waveguide
Il. FERRITE SPHEROID AND FERRITE DISK with the longitudinalz axis, restricted by two planes=0
andz=h. In a case of an axially magnetized cylinder, we
Let sizes of a ferromagnetic resonator be much less thahavereciprocal MS waveguide modes, that is, every mode
the electromagnetic wavelength, but much more than th@ropagating in the positive direction of tteaxis has a
spin-wave wavelength taking into account the exchange incounterpart—the same mode propagating in the negative di-
teraction. In this case, the magnetostatic approximation cafection of thez axis[19,20. So, one can consider eigen MS
be successfully useplQ]. For the irrotational rf magnetic oscillations in a normally magnetized ferrite disk as standing

-2

field of the magnetostatic modes, MS waves in a cylindrical waveguide. This fact will allow us
. . to formulate the energy spectral problem for MS oscillations
H=-Vy, (1) in a disk-form ferrite resonator. For this formulation, how-

ever, an initial analysis of the spectral problem for MS wave-

where ¢ is the magnetostatic potential, the rf magnetlzatlonguide modes has to be done.

m is defined as

m=— F(w)-€¢, (2) Ill. SPECTRAL PROBLEM FOR MS WAVEGUIDE
MODES
where K is a tensor of susceptibility. For a ferromagnetic L .
spheroid with the internal dc magnetic field directed along Tal_qng Into account EQ('.l) for the rf_ magnetic field, the
thez axis, Walker obtained the orthogonality relation for two €duation for the rf magnetic flux density
oscillating MS mode$10]: - R
B=—i(w)-Vy 4

[o™+(0)*] J [AMX (M)*]-&dv=0, (3)
V

spheroid [wherei(w)= I +4mk(w) is the tensor of permeability,

is the unit matrif and the equation

whereé, is a unit vector directed along tteaxis andm, is
the magnetization vector witk andy components. As we V.B=0, (5)
have pointed out above, this orthogonality relation was not
obtained as a result of formulation of the energy spectrag ; ; CadT.
problem in a ferrite spheroid and, therefore, cannot be use ne can write the following operator equaticL
to define the energetic levels of MS oscillations. There are
other types of orthogonality relations for MS oscillations in a
ferromagnetic spheroid that also were not obtained as a result
of formulation of the energy spectral probldii7]. where

Let us consider a normally magnetized “open ferrite

L(w)V=0, (6)

disk” (Fig. 1). The word “open” means that in our model . ()™t ¥

no perfect electric or perfect magnetic walls are used in a L(w)= - (7)
. —-V. 0

general case. On the contrary to a case of a spheroid, when

an analytical solution is possible, in the case of an open disk, ) i i

some additional assumptions have to be made to solve tHa @ differential-matrix operator,

problem analytically. These assumptions concern the fact of _

separation of variables and an independent imposition of the V= B) ®)

boundary conditions on a lateral cylindrical surface and gl
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is a vector function included in the domain of definition of z
the operatoiL. Equation(6) describes the field inside a fer-
rite. Outside of a ferrite medium we have the same equation, s® s®
but with &= i". Let the fields’ variation along with the lon-
gitudinalz axis be described by the facter 2. Based on the | x .
Eq. (6) inside a ferrite, analogous equation wiji= i out- y ' H,
side a ferrite and taking into account homogeneous boundary <
conditions, one can formulate a spectral problem for MS
waveguide modes with a wave numberas a spectral pa-
rameter. For two MS waveguide modes, we have the or- \
thogonality relatior{21] 7
(7p+ yg)fs( ﬁvp)(v{; )ds=0, 9) FIG. 2. Axially magnetized ferrite cylinder.
A special feature of a MS waveguide structure based on
where axially magnetized ferrite cylindethat does not take place
0 & in such types of electromagnetic-wave waveguide structures
R= & (10) as closed hollow or open dielectric waveguidasthe fact
-é, 0)’ that in the frequency region; < o< w, between two cutoff

_ frequencies w;=vy'H; and w,=1v'[H;(H;+47MJ]*?
V is a membraneunction of the fields in a waveguide de- (where v’ is the gyromagnetic ratiof; is the internal dc

fined from the relation magnetic field, andVi4 is the saturation magnetizatiprwe
B have acomplete discrete spectrum of propagatifig=ig3)
V(x,y,2)=V(x,y)e 7% (11)  MS modeq19,20.

Together with a system of two first-order homogeneous
andSis a square of a waveguide cross section. The norm oEgs. (6). one second-order homogeneous differential equa-
modep is determined as tion for a MS waveguide can be considered as well. This is

the so-called Walker equation in a ferr{t€Q]:

Np=iwfs(ﬁzvp)(vp)*ds=inS(TppEE;—Tp;ﬁp)-ézds.

Gy=0, (15
(12
where
This norm(derived by 4 describes the averaden the pe-
riod 27/w) power flow through a waveguide cross section. G= —ﬁ-(ﬁﬁ) (16)
Such a statement can be verified by two ways. First, one can
be easily persuaded to the fact that a norm written as is the Walker operator. For a ferrite magnetized alongzthe
axis the tensor of permeability has a fof20]
N,= L(prH;+E;pr)~ezds (13 u i, O
E=po| “ika wm Of, (17)

for membrane functions of electric and magnetic fields and
correspondingbeing divided by 4 to the averagdon the 0 0 1

period 27/ w) power flow of an electromagnetic-wave wave- s >
guide mode[22], amounts to the norngl2) for the irrota- Where u=1-oj0n/(0”~ 1), pa=won/(0i— %), oy

tional magnetic and rotational electric fieli®0,23,24. Sec- =7 47Ms. _

ond, let us consider Eq(6) together with the equation  In this case, Eq(15) can be rewritten as
complex conjugated with Ed6). We can obtain after some 5 5 5
transformations: i oY Iy

MW—’_M&_)/Z—’_E:O. (18

o - I R -

2 V(BT =¥ B)+ - [B* - (fi(w)) "B Based on the Walker equati¢h5) inside a ferrite and the

Laplace equation outside a ferrite and taking into account
-B- (T* (w)) L I§*]=O. (14 homogeneous boundary conditions, we consider orthogonal-

ity relations for two types of MS waveguide structures: an

This is an energy balance equation for monochromatic M&xially magnetized ferrite cylinder and a normally magne-

waves. The first term in the left-hand sifdleHS) of Eq. (14) tized ferrite film.

is the divergence of the power flow density and the secondl) Axially magnetized ferrite cylinde(Fig. 2).

term in the LHS of Eq(14) is the density of magnetic losses.  For MS potential written as
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= vz ~ o~ ~ o~ ~~
#=gixy)e T 19 LF)(Gﬂﬁ)lﬂ*ds: JS(F)(le)*wd&l— 3@LP<F>(w.¢*>d/.
The Walker equation has a form (22)
G, Y+ y2yY=0, (200  The contour integral in E(22) has a form
where § PO A= § B BT, (23
~ L L
GL:MVi- (22

where B, is a component of a membrane function of the
V% is the two-dimensionalon the waveguide cross section magnetic flux density normal to contolr The validity of
Laplace operator. expression23) can be shown with the use of a simple ex-
Let a cross section of a ferrite r&™ be surrounded by ample of a ferrite rod with a rectangular cross section re-
contourL. For Hermitian tensojic a double integration by stricted by coordinates,;, x, andy;, y,. In this case, one
parts gives: has after a double integration by parts:

Er s o) [ ip 9y _ ip Y * %o
ﬁ_P (" )d/ {fyl M(?X+|Ma_(9y v M&X+|Ma_(9y y|dy X
T L T S A A o B
+[L1{ _':“agﬂi@ [ _|MaW+MW @ dX} (24

Y1

That is, we have an integral in the form of express(28). wherer is a radius vector in a plane of a ferrite film, one has
Since a line integral can be represented as integrals by coothe Walker equation
dinate projects, the validity of expressi@@3) becomes evi-
dent for a general case of contdur & )
A cross section of a dielectric regid® surrounding a ?+q pip=0. (28)
ferrite rod is extended to infinityx(—o, y—®) and is re-
stricted by the inner contolr. We have the Laplace equa- gased on Eq(28) in a ferrite region and similar equation
tion in a dielectric region and, in accordance with the GreeQwith w=1) for a dielectric with taking into account homo-
theorem, one obtains a contour integral geneous boundary conditions on surfaze® andz=h (the
~ ~ continuity of ¢ and dy/9z) and the conditionyy— 0 for |Z]
f P(D)@,Tlf*)d/: 4;(‘?_"”:0*_ ad @)d/ (25) —oo, one obtains the orthogonality relation for two MS
L L\ d an modes:

wheren is a normal to contout. Because of homogeneous 5 L. 0 _ _ o

~ ~ * * * * —
boundary conditionéthe continuity ofgs andB, on the con-  [9a—(dp) ][ J'O mlalpdz+ fﬁwZaZb dz+ fh Lalh dz} =0,
tour L) (29)

é [PP(, )+ PO (%, %*)]d/ =0, (26) Two forms of the orthogonality relation8) and(27) will
L be used further to obtain the energy eigenstates for modes

. _ ) . propagating in a MS waveguide. To analyze the energy
the following orthogonality relation for two MS waveguide

modes takes place: AZ

[ve—(7§)7] L%Zﬂ;ds: 0, 27 ) 1

whereS=SF +s®), /J s
(2) Normally magnetized ferrite filngFig. 3). v W////V //////%/ h

For MS potential written as f

lﬂ:N{(Z)e_q'r, FIG. 3. Normally magnetized ferrite film.
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eigenstates in MS ferrite resonator, the orthogonality relation _

(29) has to be used in addition. =2 |an|?f,, (36)
To investigate the energy relations in a MS waveguide, "

the question about a probability distribution function should

where f, is an eigenvalue of a quantitythat satisfies the
be considered. n g q ty

operator equation

IV. MS POTENTIAL AS A PROBABILITY DISTRIBUTION fLon=1ro,. (37)
FUNCTION
In some cases of MS waveguides, the knowledge of thd Ne operatof | acts on the waveguide cross section. We can
MS potential wave function) gives a possibility to define See that
every state of the physical quantities. o
Let us represent a magnetostatic potential in @) as f= f ?*(f,%)ds. (39
s

Yn=Ape 7, (30) R
Since operatof is self-conjugated, one can easily obtain
whereA is a dimensional coefficient ari@ is a dimension-
less membrane function. o L
Since the membrane functions of MS modes in an axially (fo=fm) L%(Pmds— 0. 39
magnetized ferrite cylinder give a complete discrete set of
functions(on a waveguide cross sectjpnhe dimensionless In particular,f,,, and f,, may be eigenvalues of the normal-

membrane functioi@ in Eq. (30) can be written as ized MS energy.
- ” - V. ENERGY EIGENSTATES OF MS MODES IN AN
(P:n§=:1 an®n 31 AXIALLY MAGNETIZED FERRITE CYLINDER

_ ) Let us represent the MS potential as a quasimonochro-
wherep,, is a membrane function of MS mode. In a case ofmatic quantity,

a cylindrical MS waveguideg,, are characterized by Bessel
functions[19]. Because of the orthogonality relati@@7), = m(t)e'et, (40)
one can write

where the amplitude/™®is a smooth function of a time, so

that
fs|?pn|2ds=1. (32

Jd
-1 (max)
i

<y(ma, (42)

A system of function$p,, is the orthonormal system of func-

tions and, therefore, we have o .
Let a part of an infinitely long lossless MS waveguide be

o restricted by two cross sections placedzatz,, z,. For the
f 1%|2ds= E |lag|2. (33 guasimonochromatic MS wave process, one can write the
s n=1 energy balance equation in a waveguide section:

Amplitude a,, shows with what weight the statg, is repre- (. = d (2 _
sented ing. SV”' P,dsdz+ at SW dsdz=0, (42
zZ z
Let the function@ be normalized tainity, that is, ! '

where I5H is the averagdon the rf periodl power for flow
f |3|?ds=1, (34 density along a MS waveguid&, means the longitudinal
s part of divergence, and is the averagéon the rf periodl
density of the energy. Based on E@4), (14), and(17), the

This condition means that first term in the LHS of Eq(42) is written as

© , =
> lad?=1. (35 jzjv”.p”dsdz
n=1 zp JS

If the normalization conditior{34) takes place, the function . 3 S e e
|%|2 is a probability distribution function for a configuration ~al®mo 2 SV”'(‘WW — ¥ Vy)ds dz
(a waveguide cross sectipaf a system.

We can introduce a notion of an average quar{atynean

1 sz =2 2
© _1 V2t~ V2 ds dz (43
value T of a physical valud [15]; “""’“’Ll LIV eTVi)ds dz (49
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whereV, andV? are one-dimensiondlongitudina) parts of, ~ teristic cross section. Based on expressig@), (31), (47),

respectively, the gradient and the Laplace operators. and (49), one obtains for mode with the unit amplitude
By appropriate change of variables, any system of equa(| ay|*=1)

tions describing oscillations in one-dimensional linear sys-

R : - o
tems with distributed parameters may be writte] 25: E,= gT Bﬁ, (50)
.. du
Qu= gt (44) where g is the unit dimensional coefficient with the same
dimension as coefficieri?.
where U(z,t) is a vector function with components,, Our definition of an average quantifynean valug [see
Uy, ... describing system properties ad= O(z) is a dif-  €xpression38)] allows to write
ferential matrix operator. In our case of a MS waveguide
sections, oscillations are described by distribution of MS po- E= J' ?*(E,d)ds,
tential ¢ with respect to the longitudina axis. This distri- s

bution is characterized by the second-order one-dimensional

differentional equation. When we rewrite E@4) as whereF, is the operatorof the normalized averagen the
) rf period MS energy of a propagating waveguide mode. The
I V2= Y 45 following operator equation takes place:
- X Il ’;U_ E, ( )
'A:Lan: Enen- (51

(where X is a constant quantifjywe can see that based on

Egs.(42) and(45), one obtains Based on Eq(18) and taking into account expression
(31), we have

1 WOEL( YViY* = Vig)ds dz
NI

= EIZZJ wds dz (46) FL=KuVi, (52
dt )z Js

whereK is a constant value. We have for a propagating mode
The average energy of a MS waveguide section can be

characterized as

2~ 2~
uViPn=Bren-

Iy i Since E,, is proportional to?, the operato, has to be
= 7 +w dsdz n prop ns p 1

*_ "
at proportional tox V2. So we can write

K=g %. (53
W W""szzf *ds d (47)
= sdz
4 2 swf For MS moden, we have the differential equation
One can see that coefficieXthas the dimensiofiT L 2] or HoM oy _
(in Sl unit9 sec/M. This coefficient may be defined by the 9 Vien=Engn. (54)
following way.
Since Similarly to expressiori27), one can easily obtain from Eq.
2 ) (54):
Vig—y¢=0,
we have from Eq(45) for MS waveguide modea: (En—En) | 21;,ds=0. (55)
S
o 9, _ _ . :
—I Xy =t = =0. (48)  This property of orthonormality of MS waveguide modes is

one of the most important characteristics of eigenfunctions in
In a case of a pure monochromatic wave process charactelfle energy spectrum.

ized by frequencyw(e'®!), one has for mode The solution forys,, may be written as:
2 = Aa e 2(Edlgugz1"?

=A e”! nl’9%0 , 56

Xn:_%- (49) n anen (56)

similarly to the solution obtained from the one-dimensional
We define a notion of theormalized average (on thé  time-independent Schdinger equation for the wave func-
period) MS energy of propagating waveguide modéyp  tion of a free particlg15]. OperatorF, acting to the MS
=iB,), E,, as the averag®n the rf period MS energy ina potential resemble the Hamiltonian operator acting to the
waveguide section with the unit length and the unit characwave function[15].
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A special feature of a MS waveguide structure based on ¢(|||>:C<|||>eg<'>>z_ (62)
an axially magnetized ferrite cylinder, as it was pointed out @ z
above, is the fact that in the frequency region between twgy, expression$60)—(62), 8F) and8(®) are, respectively, the
cutoff frequenciesw, andw,, we have a complete discrete \ave numbers along theaxis in a ferrite and a dielectric
spectrum of propagating MS modgs9,20. In accordance [ ,(F)=jgF ,(®)=g®)7] |t is necessary to point out that
with Eq. (50), every propagating mode of a spectrum is charhe solution in regiong and Il (0<z=<h) has the form of
acterized by the normalized averagm the rf period MS gy yression(60) only for reciprocal (with respect to thez
energy. So for given frequenay, the total normalized aver- - ayiq MSWs. In a case of an axially magnetized cylinder, the
age (on the rf periogd MS energy for all the spectrum of psws are reciprocal waved9.
propagating modes can be written as: To find out the solutions for(p) we have to substitute
into Eq. (58) the solution(59) for ¢ («) and the solutions

Mo - 60)—(62) for . For region | ¢=h,p=<a) we have
Ewta':TgnZl aﬁﬁﬁ (57) (60)-(62 #(2) gl 4 psa) w \4
- 9? 19 m2
P IR gy —z} Wp)=0. (63
VI. ENERGY EIGENSTATES OF MS OSCILLATIONS P pop P

IN A FERRITE DISK The same equation, one has for region Bi<0,p<a). For

The energy spectral problem solved for a MS waveguiddegionF(0<z=<h,p<a) we have
is very important for energy spectral problem in MS resona- -
tors. Let us consider an “open ferrite disk” shown in Fig. 1. *i(p) + l 9Y(p) _ (8)? +
We have four main regions: regidh—a ferrite and regions dp* p dp L M P
I-1ll—dielectrics. The role of the corner regions is supposed , ,
to be neglected. We describe the MS potential in a ferrite by" region Il (0<z=<h,p=a), we can write
the Walker equation(15). Outside a ferrite, we have the Pup) 1 app)
Laplace equation. The boundary conditions at surfaces of a 2p + = P
disk are the continuity of MS potentiak and the normal ap p dp

components of magnetic f_qu_ dens_iB/. Further, —0 al " One can see that E@64) becomes the Laplace equation if
infinity. For the dc magnetic field directed along thexis, (BF)% u is replaced by 7). Equations(64) and (65)

;he Walker equation in cylindrical coordinates, &,2) has a correspond to equations obtained and analyzed by Joseph
orm: and Schlonann for MSWs in a long, axially magnetized cyl-

#(p)=0. (64

m2
v

#(p)=0. (69

[ 2
m
»(/ff(F))ZJr rd

2 5 2 inder[19].
“ ‘?_'/2’+ 1 9 iz ‘9_"/; 4 ﬁ_lé/:o_ (58) In the Bessel equatiof63), 8P is real and for the prob-
dp= pdp pTda”] Iz lem under investigation, only(3(°)p)—the Bessel func-

tion of real argument is a physically acceptable solution. So

Outside a ferrite, we have the similar equation, but W|thfor region | we have

n=1
In cylindrical coordinates acceptable solutions for the w(l>(p):CE}l>Jm(ﬁ(D>p). (66)
Walker and Laplace equations in different regions of the
structure, are of the form: A similar expression, we have for region Il
= (p) () P(2). " (p)=ClM3.(BP)p). (67)
In every region of the structure we have the following solu-A physically acceptable solution for E(4) is possible only
tion for ¢ (w): for ©<0. In this case, we have
Yla)=C,e ™, (59) P (p)=CIn(B T (— 1) ). (68)

wherem is an integer(positive or negative For different  For Eq.(65) one obtains
regions of coordinate, the functiony(z) has the following | " .
forms: ¢"M(p)=CJVKn(Bp), (69)

(1) for regionsF and Il (O<z=<h): . . i )
whereK ,, is the Bessel function of an imaginary argument.

P (z)=CPcos(8Fz)+DPsin(BFz).  (60) Igow Idet ui irwoshe the boundary conditions on the planes
z=0 andz=h. We have
(2) for region | (z=h): 51//E|)) r?l/sz))
M2y = HF) B _T
() gD)(g P V(2)= "2 =n, = (70
pV(z)=ClPe A7z (62) z 9z gz |, _,

(3) for region Il (z<0): and
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F) 1
Wy W
9z iz | _,

PP (2)=y"(2)|,-0, (71

The boundary condition§70), (71) together with solutions

(60)—(62) give a system of homogeneous equations for the
coefficients. The condition of equality of a determinant of
this system of equations to zero leads to the following tran-

scendental equation:

2V~
Fpy=_ Y =
tan(87h) Tr. (72
Equation(72) was obtained based on the relation
ﬂ(D):LIB(F) (73
VT M

derived from Eq.(58).
At the lateral surfaced=a,0<z=<h) one should have the
continuity conditions for potential and for the radial com-

ponent of magnetic flux densi@. Taking into account ex-

pression(17) for tensor,ZZ and making necessary vector tran-
sitions from rectangular to cylindrical coordinates, one

obtains for the interior of a ferrite

B = H +iu H, )= W i, 1%
p=Mo(puH,FiuHy )= puo S IMap )
(74)

whereH , andH, are the radial and circumferential compo-
nents of the rf magnetic field.

The continuity conditions foB,, and ¢ on the boundary
p=a then leads to the following equation

Jn K, Mam
1/2-M m a _
—u)2 e R S =0, 75
where we denoted
In=In(BP|(—w) ), Kn=Kn(|8"]a),
, _ 3 B7[(— 1)~ V%)|
= ;
dap ‘p:a
oK (F)
Kr"nE m(|:8 |p) (76)

ap

p=a
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o 0 Iy
©“Ho X(D)j VL
4 fs s v ot
v

fotes

h

o

il PP <F>J
pr dz+X

0

l//*

0

dz+ X(D)f

d
ot ot h

P
Jat

o _ h_ 0_
J[I W&D)dz+f W(F)dz+j wydz
S| J—o» 0 0
(77)

The averaggon the rf period MS energy of a ferrite
resonator can be characterized as

T
W= 4 Js

+X(D)Jw¢¢*dz}ds.
h

X\ +¢*Z—iﬂ)dz ds

d

at ds.

0 h
x<D>f_x¢¢*dz+x<F>f0 Yy dz

(78

We represent a resonance mode in a ferrite disk as fol-
lows:
Upa=AEp(2Bq(p, a), (79
where and are piecewise continuous dimensionless func-
tions that are defined based on E@)—(62) and(66)—(69).

For functiong, the normalization conditio(82) takes place.
At resonance frequenay, [found based on Eq¢72) and

(75)], one can write the normalization condition for function

&p taking into account expressid@9):
e o _ o
fo Mpq|§p| dz+ Jl |§p| dz+ fh |§p|dz:11 (80)

where we denotegh ;= u(wpg).
For resonance frequenay,,, one has for coefficients
X(®) and X(F) in expression79):

(Bp)?
X = (81)
pq
and[see expressiofi73)]
(Bpg)* (Bpa)?
X = aj’q =—fipg af;q . (82

To obtain eigenfrequencies of a ferrite disk resonator one

has to solve a system of two Eq§.2) and (75) for given
values ofh, a, andm. The solutions in forms of relation(§0)
and (66)—(68) are correct only foru<0. It means that the
admissible frequency region is restricted@s< 0 < w,.

In our model of an “open ferrite disk,” the MS potential
distribution with respect to theaxis can be characterized by
equations similar to Eq45), but with different coefficients

Xin ferrite and delectric regions. By analogy with expression

(46), one obtains

Here we denote@, = B(wp)-

Based on the normalization conditiof®2) and(80), we
introduce the notion of th@ormalizedaverage(on the rf
period energy of MS oscillations. For a ferrite disk resona-
tor with a unit characteristic volume, one has the normalized
energy of the MS oscillation with the unit amplitude:

_ wolBpd)?

E i (83

pPq
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Here expressiofi78), (81), and(82) have been usedjis the  an excitation of normal modes by the exterigiven) cur-
unit dimensional coefficient. rents and charges was analyzed. In particular, the traditional
Based on expressia83) and taking into account EG18)  technique describes an excitation of MS-wave waveguides
in a ferrite region and the Laplace equation outside a ferritegue to electric current transducd0,24]. In [21], we con-
one can obtain sidered another type of excitation: the MS mode excitation
due to the externalgiven) rf magnetic field. The excitation
g@Vf’éq:qu?oq. (84)  problem analyzed ifi21] is not, however, so well justified.

4 One has only the homogeneo(Walken equation for MS
potential, but there are no such kind of a nonhomogeneous
equation with the external rf magnetic field in the right-hand

(85) side. Now, based on the results of this paper, one has a
possibility to consider the MS mode excitation as a time-
with dependent perturbation of the energy spectrum in an axially
magnetized ferrite cylinder.

It means that the operator equation

F 1 9q=Epqeq

N Mo Our analysis of energy eigenstates of MS oscillations
Fi:gTVL (86) gives a possibility to explain a multiresonance spectrum of
absorption peaks, one can experimentally observe in the ef-
takes place. fect of coupling between the rf magnetic field and very small
The energy orthogonality condition for MS oscillations in ferrite-disk resonatorgpatrticles. It becomes clear now that
a ferrite disk resonator obtained from E&4) has a form: the observed multiresonance peaks are due to portion absorp-

tion of energy of the exciting rf magnetic field. In our analy-
87) sis, we used the mathematical apparatus based on the theory
of linear operators similar to the quantum mechanical appa-
ratus.
Our analysis of energy eigenstates of MS oscillations in a With respect to the problem under consideration, it is im-
ferrite disk is valid only when the wave-numbeéwith re-  portant to keep in mind the fact that when in classical elec-

spect toz axis) spectrum of “thickness modesEp(z) [see trodynamics structures the spectral problems are character-
expressior(79)] is “rare” enough compared to the “dense” ized by wavenumbersand frequenciesas the spectral
Spectrum of “in_p|ane modes"qbq(p,a)_ This situation re- param_eters, n quantum mechanics structures theremre
ally takes place in our case of a ferrite disk with a smallergy eigenstateas the spectral parameters.

(Epg—Epq') JS?Pq?P;'dS: 0.

thickness to diameter ratioh(2a<1). So, for the main With use of the spectral methddith energy eigenstatgs
“thickness mode” one has aenergetic spectrurdue to the ~We are able now to develop the perturbation theory for MS
“in-plane mode” spectrum. oscillations. These should be time-independent perturbations

It is also necessary to call the reader’s attention to a Ver&to take into account the role of nonuniform internal dc mag-
important fact that, in accordance with Joseph and ‘Schionetic field and time-dependent perturbatidfts consider ex-
mann analysig19], one has different absolute values of Citation by the rf magnetic field Similar to the quantum
wave numbers for the left-hand and right-hand circularly po-mechanical problemgl5], the perturbation method for MS
larized MS waves in a ferrite rod. This becomes clear fromescillations constitutes a separate treatment and should be a
Eq. (75) that is dependent on a sign of integer In our ~ subject for future efforts.
analysis, this fact leads to differences of energies for the Ferrite disk, contrary to a ferrite sphere, has cylindrical

left-hand and right-hand circularly polarized MS oscillations Symmetry. Such a type of symmetry characterizes the dipole
in a ferrite disk. field similarly to the field of a two-atomic molecule. So, MS

oscillations in a small ferrite-disk resonator can be similar to
VIl. DISCUSSION dynamical processes thaF take .place in a two-atomic mol-
ecule. An artificial magnetic medium composed by small MS
We have shown in this paper that in a MS waveguideferrite-disk resonators can bear a resemblance to a paramag-
structure based on an axially magnetized ferrite cylindernetic material. It is interesting to note that a bianisotropic
propagating modes are characterized by quantities of the noparticle based on a ferrite-disk resonator with a special-form
malized averagéon the rf periogl MS energy with the or- surface metallization, being considered as a combination of
thogonality property of eigenfunctions in the energy speciwo (electric and magnetjdipoles, has symmetry properties
trum. With the use of a simple model of an “open ferrite similar to the properties one can observe in a case of elemen-
disk,” we have shown in this paper that magnetostatic osciltary particles: a combination of change conjugatiGh, par-
lations in a normally magnetized sample can be described bigy (P), and time reversa(T) (the so-called CPT-invariange
eigenfunctions with stationary energy eigenstates. These ré16].
sults of our theoretical analysis show that propagating MS One can see that one-dimensional wave equatits)
modes and MS oscillations actually can diagonalize the mageontains a first derivative with respect to time, and a second
netic energy. derivative with respect to the space coordinate. So there is an
In classical waveguide problem@or electromagnetic- asymmetry between the time and space coordinates and,
wave[22] and, in particular, MS-wave waveguidg®),24)), therefore, Eq(45) is not invariant with respect to the Lor-
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entz transformations. The reason of this asymmetry is thgbroperties characterized by energy eigenstates of oscillations.
the magnetostatic wave equations in a ferrite, being resulte8imilar to the theory of natural condense meldig,27, fur-

in the “distorted” Maxwell equations written for irrotational ther development of the theory of artificial dense materials

magnetic and rotational electric fields, describe “slow” should be focused on the energetic-spectrum properties of a
wave processes with velocities much smaller than the velocsystem of artificial molecules.

ity of electromagnetic waves at the same frequerfy;24]. New definite physical results concerning the subject of

Similarly, the Schrdinger wave equation is nonrelativistic: this paper arise from recent experimental study of spectra in
it is suitable only for particles whose velocity is much ferrite resonators with special-form surface electrodes

smaller than the velocity of lightl5]. [29,30. An adequate description of the observed regular
multiresonance spectra of magnetoelectric oscillations ex-
VIll. CONCLUSION cited by the external rf electric, magnetic, and combined

} . _(electrict magnetic) fields, should, certainly, be given based
At present, we are witnesses to a very strong interest ign the quantized picturewith a proper consideration of the

electromagnetic completanisotropic, chiral, bianisotropic  magnetostatic-potential functions as the probability func-
materials. Artificial composite materials play an importantijgns.

role in attempts to realize new electromagnetic materials. It
becomes clear, however, that to have such materials with
properties that satisfy the principles of macroscopic electro-
dynamics, two levels of consideration, microscopic and mac- The main results of this paper were subjected to intensive
roscopic, have to be us¢#,26—28. Microscopic properties discussions in scientific seminars during the author’s recent
of natural electromagnetic materials are based on quantustay at the Department of Electrical and Electronic Engineer-
mechanical theory. In this paper we have shown that soming, Yamaguchi University, Japan. The author is very thank-
particles inartificial composite materials can be consideredful to I. Awai, A. K. Saha, and A. Sanada for such produc-

microscopically as artificial molecular structure’s with tive discussions.
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