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Energy eigenstates of magnetostatic waves and oscillations
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Effect of excitation of magnetostatic oscillations in a ferrite resonator by the microwave magnetic field was
a subject of many publications of more than the last 40 years. The most interesting multiresonance spectrum of
absorption peaks one can observe experimentally is a case of disk-form small ferrite resonators. It is shown in
this paper that such small ferrite resonators can be considered as ‘‘artificial molecular structures’’ with prop-
erties characterized by energy eigenstates of magnetostatic oscillations. A special interest in these properties
may be found in the field of microwave artificial composite materials.
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I. INTRODUCTION

Some quantum mechanical effects are readily simula
by sufficiently flat microwave resonators since the Sch¨-
dinger and the Helmholtz equations are equivalent in t
dimensions~see, for example,@1#!. The question, however, i
if one can use some specific properties of microwave re
nators not for simulation, but to obtain fundamentally ne
physical effects. A special interest in these new effects m
be found in the field of artificial composite materials. R
cently, we put forward a concept of artificial microwave b
anisotropic materials based on a composition of ferrite m
netostatic ~MS! resonators with special-form surfac
metalizations—the magnetostatically controlled bianisot
pic materials~MCBMs! @2,3#. The MCBMs, being local tem-
porally dispersive bianisotropic media, demonstrate n
electromagnetic properties unknown for any natural mat
als @3–5#.

Fundamental principles of macroscopic electrodynam
of bianisotropic media should arise from the microsco
point of view @5#. It is supposed that the main characterist
of a ferrite bianisotropic particle~BAP! should be based on
the effect of the MS oscillations in a ferrite body coupl
with the surface electric current oscillations on a region
metallization @2#. Recently, this effect of magnetoelectr
coupling in a ferromagnetic resonator with a surface me
lization has been experimentally verified@6,7#. Now, in the
attempts to solve an excitation problem for characteriza
of a multiresonance regime in a ferrite BAP, we are fac
with the fact that even an excitation problem for MS in
‘‘pure’’ ~without a surface metallization! ferrite resonator is
rather far from completion.

Effect of excitation of MS oscillations in a ferrite reson
tor by the rf magnetic field was a subject of many public
tions of more than the last 40 years. It is well known that
necessary condition for excitation of multiple MS modes
the ferrite ellipsoids~or the ferrite sphere, as a particul
case! is that the exciting rf magnetic field at the sample
essentiallynonuniform@8,9#. In this case, however, one ca
see just only a few absorption peaks in a spectrum. In
theory of MS oscillations in a ferrite spheroid, Walker h
shown, for the first time, that orthogonality relations betwe
different modes of the rf magnetization takes place@10#.
These orthogonality relations, however, were not obtaine
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a result of formulation of theenergy spectral problemin a
ferrite spheroid and, therefore, cannot be used to define
energetic levels of MS oscillations.

The situation can be completely different when no
spherical~nonellipsoidal, more precisely! ferrite samples are
used. In a case of small ferrite disks, for example, placed
a region of theuniform magnetic field, a long series of os
cillating MS modes are excited@11,12#. These experimenta
results demonstrate that magnetosatic modes actually di
nalize the total magnetic energy. We do not have, howe
the proper explanation of so rich a spectrum of the abso
tion peaks. The role of nonuniform internal dc magnetic fie
in disk-shaped samples was demonstrated in experim
@13#. Schlömann tried to explain the mechanism of conve
sion of electromagnetic power into spin-wave power ba
on the fact that the effective wavelength of the spin wav
becomes large in the presence of a suitably nonuniforme
magnetic field@14#. He found a certain resemblance betwe
equation of motion for the magnetization and the Sch¨-
dinger equation. His classical approach, however, can
give any explanations about an excitation of a rich spectru
one can observe in experiments with disk-form samples.
do not have an initial formulation of the energy spect
problem in this case.

To explain the effect of coupling between the electroma
netic field and very small ferrite resonators~particles! the
mathematical apparatus, similar to the quantum mechan
apparatus and based on the theory of linear operators@15#,
has to be used. With the use of a simple model of an ‘‘op
ferrite disk,’’ we will show in this paper that magnetostat
oscillations in a normally magnetized sample can be
scribed byeigenfunctions with stationary energy eigenstat.
We will have a possibility to formulate an energy spect
problem and to obtain a discrete spectrum of energy lev
So an ‘‘artificial magnetic atom/molecule’’ with new prop
erties becomes a subject of investigations. As a subject
future research, the role of the nonuniform dc magnetic fi
may be analyzed as a potential-energy perturbation of
initial discrete spectrum in a ferrite disk. Excitation of M
oscillations by the rf magnetic field is supposed to be c
sidered as a time-dependent perturbation.

In a case of a ferrite BAP the energetic levels should
defined by coupled oscillations of the rf magnetization a
the rf surface electric current. The aim of our future public
©2001 The American Physical Society12-1
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tions is an analysis of such a ferrite BAP~that contains two
subsystems and can be called conventionally as an ‘‘artifi
magnetoelectric molecular structure’’! based on the presen
analysis of eigenfunctions and energy eigenvalues in a fe
disk. One can expect to have new physical effects in th
particles. In particular, recent qualitative investigation de
onstrates interesting symmetry properties of a ferrite B
@16#.

II. FERRITE SPHEROID AND FERRITE DISK

Let sizes of a ferromagnetic resonator be much less t
the electromagnetic wavelength, but much more than
spin-wave wavelength taking into account the exchange
teraction. In this case, the magnetostatic approximation
be successfully used@10#. For the irrotational rf magnetic
field of the magnetostatic modes,

HW 52¹W c, ~1!

wherec is the magnetostatic potential, the rf magnetizat
mW is defined as

mW 52kJ~v!•¹W c, ~2!

where kJ is a tensor of susceptibility. For a ferromagne
spheroid with the internal dc magnetic field directed alo
thez axis, Walker obtained the orthogonality relation for tw
oscillating MS modes@10#:

@v~l!1~v~n!!* #E
Vspheroid

@mW '
~l!3~mW '

~n!!* #•eW zdv50, ~3!

whereeW z is a unit vector directed along thez axis andmW ' is
the magnetization vector withx and y components. As we
have pointed out above, this orthogonality relation was
obtained as a result of formulation of the energy spec
problem in a ferrite spheroid and, therefore, cannot be u
to define the energetic levels of MS oscillations. There
other types of orthogonality relations for MS oscillations in
ferromagnetic spheroid that also were not obtained as a re
of formulation of the energy spectral problem@17#.

Let us consider a normally magnetized ‘‘open ferr
disk’’ ~Fig. 1!. The word ‘‘open’’ means that in our mode
no perfect electric or perfect magnetic walls are used i
general case. On the contrary to a case of a spheroid, w
an analytical solution is possible, in the case of an open d
some additional assumptions have to be made to solve
problem analytically. These assumptions concern the fac
separation of variables and an independent imposition of
boundary conditions on a lateral cylindrical surface a

FIG. 1. Ferrite disk with a small thickness/diameter ratio.
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plane surfaces of a disk. In a case of such assumptions
exclude, in fact, an influence of the edge regions. This d
not correspond to the exact electrodynamical conditions,
may give, nevertheless, very satisfactory results. It is cl
that the more elongated form of a cross section of a struct
the less an influence of the edge regions we have. In op
waveguides with a rectangular form of a cross section,
method of separation of variables gives the better result
calculations, the less ratio thickness/width~the so-called
‘‘Marcatili approximation’’ @18#!. One can expect that in ou
analysis of an ‘‘open ferrite disk,’’ a structure with a sma
axial ratio is more preferable. In connection with our a
sumption, it is relevant to point out that in the experimen
@11,12# we have a multiresonance regime of MS modes j
in ferrite disks with a small thickness to diameter ratio~ap-
proximately 1/15–1/20!.

Based on our model, we will consider a structure sho
in Fig. 1 as a section of an open cylindrical MS wavegui
with the longitudinalz axis, restricted by two planesz50
and z5h. In a case of an axially magnetized cylinder, w
have reciprocal MS waveguide modes, that is, every mo
propagating in the positive direction of thez axis has a
counterpart—the same mode propagating in the negative
rection of thez axis @19,20#. So, one can consider eigen M
oscillations in a normally magnetized ferrite disk as stand
MS waves in a cylindrical waveguide. This fact will allow u
to formulate the energy spectral problem for MS oscillatio
in a disk-form ferrite resonator. For this formulation, how
ever, an initial analysis of the spectral problem for MS wav
guide modes has to be done.

III. SPECTRAL PROBLEM FOR MS WAVEGUIDE
MODES

Taking into account Eq.~1! for the rf magnetic field, the
equation for the rf magnetic flux density

BW 52mJ ~v!•¹W c ~4!

@wheremJ (v)5 IJ14pkJ(v) is the tensor of permeability,IJ
is the unit matrix# and the equation

¹W •BW 50, ~5!

one can write the following operator equation@21#:

L̂~v!V50, ~6!

where

L̂~v![S „mJ ~v!…21 ¹W

2¹W • 0
D ~7!

is a differential-matrix operator,

V[S BW

c D , ~8!
2-2
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ENERGY EIGENSTATES OF MAGNETOSTATIC WAVES . . . PHYSICAL REVIEW E 63 066612
is a vector function included in the domain of definition
the operatorL̂. Equation~6! describes the field inside a fe
rite. Outside of a ferrite medium we have the same equat
but with mJ5 IJ. Let the fields’ variation along with the lon
gitudinalz axis be described by the factore2gz. Based on the
Eq. ~6! inside a ferrite, analogous equation withmJ5 IJ out-
side a ferrite and taking into account homogeneous boun
conditions, one can formulate a spectral problem for M
waveguide modes with a wave numberg as a spectral pa
rameter. For two MS waveguide modes, we have the
thogonality relation@21#

~gp1gq* !E
S
~R̂Ṽp!~Ṽq* !ds50, ~9!

where

R̂5S 0 eW z

2eW z 0 D , ~10!

Ṽ is a membranefunction of the fields in a waveguide de
fined from the relation

V~x,y,z!5Ṽ~x,y!e2gz, ~11!

andS is a square of a waveguide cross section. The norm
modep is determined as

Np5 ivE
S
~R̂Ṽp!~Ṽp!* ds5 ivE

S
~ c̃pBW̃ p* 2c̃p* BW̃ p!•eW zds.

~12!

This norm~derived by 4! describes the average~on the pe-
riod 2p/v) power flow through a waveguide cross sectio
Such a statement can be verified by two ways. First, one
be easily persuaded to the fact that a norm written as

Np5E
S
~EW̃ p3HW̃ p* 1EW̃ p* 3HW̃ p!•eW zds ~13!

for membrane functions of electric and magnetic fields a
corresponding~being divided by 4! to the average~on the
period 2p/v) power flow of an electromagnetic-wave wav
guide mode@22#, amounts to the norm~12! for the irrota-
tional magnetic and rotational electric fields@20,23,24#. Sec-
ond, let us consider Eq.~6! together with the equation
complex conjugated with Eq.~6!. We can obtain after som
transformations:

iv

4
¹W •~cBW * 2c* BW !1

iv

4
@BW * •„mJ ~v!…21

•BW

2BW •„mJ * ~v!…21
•BW * #50. ~14!

This is an energy balance equation for monochromatic
waves. The first term in the left-hand side~LHS! of Eq. ~14!
is the divergence of the power flow density and the sec
term in the LHS of Eq.~14! is the density of magnetic losse
06661
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A special feature of a MS waveguide structure based
axially magnetized ferrite cylinder~that does not take plac
in such types of electromagnetic-wave waveguide structu
as closed hollow or open dielectric waveguides! is the fact
that in the frequency regionv1<v<v2 between two cutoff
frequencies v15g8Hi and v25g8@Hi(Hi14pMs)#1/2

~where g8 is the gyromagnetic ratio,Hi is the internal dc
magnetic field, andMs is the saturation magnetization!, we
have acomplete discrete spectrum of propagating(g5 ib)
MS modes@19,20#.

Together with a system of two first-order homogeneo
Eqs. ~6!. one second-order homogeneous differential eq
tion for a MS waveguide can be considered as well. This
the so-called Walker equation in a ferrite@10#:

Ĝc50, ~15!

where

Ĝ52¹W •~mJ¹W ! ~16!

is the Walker operator. For a ferrite magnetized along thz
axis the tensor of permeability has a form@20#

mJ5m0F m ima 0

2 ima m 0

0 0 1
G , ~17!

where m512v1vm /(v22v1
2), ma5vvm /(v1

22v2), vm

5g84pMs.
In this case, Eq.~15! can be rewritten as

m
]2c

]x2 1m
]2c

]y2 1
]2c

]z2 50. ~18!

Based on the Walker equation~15! inside a ferrite and the
Laplace equation outside a ferrite and taking into acco
homogeneous boundary conditions, we consider orthogo
ity relations for two types of MS waveguide structures:
axially magnetized ferrite cylinder and a normally magn
tized ferrite film.
~1! Axially magnetized ferrite cylinder~Fig. 2!.

For MS potential written as

FIG. 2. Axially magnetized ferrite cylinder.
2-3
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c5c̃~x,y!e2gz. ~19!

The Walker equation has a form

Ĝ'c1g2c50, ~20!

where

Ĝ'5m¹'
2 . ~21!

¹'
2 is the two-dimensional~on the waveguide cross sectio!

Laplace operator.
Let a cross section of a ferrite rodS(F) be surrounded by

contourL. For Hermitian tensormJ a double integration by
parts gives:
o

-
e

s

e

06661
E
S~F !

~G'c̃ !c̃* ds5E
S~F !

~G'c̃ !* c̃ ds1 R
L
P~F !~ c̃,c̃* !dl .

~22!

The contour integral in Eq.~22! has a form

R
L
P~F !~ c̃,c̃* !dl 5 R

L
~B̃nc̃* 2B̃n* c̃ !dl , ~23!

where B̃n is a component of a membrane function of t
magnetic flux density normal to contourL. The validity of
expression~23! can be shown with the use of a simple e
ample of a ferrite rod with a rectangular cross section
stricted by coordinatesx1 , x2 andy1 , y2 . In this case, one
has after a double integration by parts:
R
L
P~F !~ c̃,c̃* !dl 5H E

y1

y2F S m
]c̃

]x
1 ima

]c̃

]y
D c̃* 2S m

]c̃

]x
1 ima

]c̃

]y
D *

c̃GdyJ U
x1

x2

1H E
x1

x2F S 2 ima

]c̃

]x
1m

]c̃

]y
D c̃* 2S 2 ima

]c̃

]x
1m

]c̃

]y
D *

c̃* GdxJ U
y1

y2

. ~24!
as

n
-

S

des
rgy
That is, we have an integral in the form of expression~23!.
Since a line integral can be represented as integrals by c
dinate projects, the validity of expression~23! becomes evi-
dent for a general case of contourL.

A cross section of a dielectric regionS(D) surrounding a
ferrite rod is extended to infinity (x→`, y→`) and is re-
stricted by the inner contourL. We have the Laplace equa
tion in a dielectric region and, in accordance with the Gre
theorem, one obtains a contour integral

R
L
P~D !~ c̃,c̃* !dl 5 R

L
S ]c̃

]n
c̃* 2

]c̃*

]n
c̃ D dl , ~25!

wheren is a normal to contourL. Because of homogeneou
boundary conditions~the continuity ofc̃ andB̃n on the con-
tour L!

R
L
@P~F !~ c̃,c̃* !1P~D !~ c̃,c̃* !#dl 50, ~26!

the following orthogonality relation for two MS waveguid
modes takes place:

@gp
22~gq* !2#E

S
c̃pc̃q* ds50, ~27!

whereS5S(F)1S(D).
~2! Normally magnetized ferrite film~Fig. 3!.

For MS potential written as

c5 z̃~z!e2qW •rW,
or-

n

whererW is a radius vector in a plane of a ferrite film, one h
the Walker equation

]2c

]z2 1q2mc50. ~28!

Based on Eq.~28! in a ferrite region and similar equatio
~with m51) for a dielectric with taking into account homo
geneous boundary conditions on surfacesz50 andz5h ~the
continuity of c and]c/]z) and the condition:c→0 for uzu
→`, one obtains the orthogonality relation for two M
modes:

@qa
22~qb* !2#F E

0

h

mz̃az̃b* dz1E
2`

0

z̃az̃b* dz1E
h

`

z̃az̃b* dzG50,

~29!

Two forms of the orthogonality relations~9! and~27! will
be used further to obtain the energy eigenstates for mo
propagating in a MS waveguide. To analyze the ene

FIG. 3. Normally magnetized ferrite film.
2-4
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ENERGY EIGENSTATES OF MAGNETOSTATIC WAVES . . . PHYSICAL REVIEW E 63 066612
eigenstates in MS ferrite resonator, the orthogonality rela
~29! has to be used in addition.

To investigate the energy relations in a MS wavegui
the question about a probability distribution function shou
be considered.

IV. MS POTENTIAL AS A PROBABILITY DISTRIBUTION
FUNCTION

In some cases of MS waveguides, the knowledge of
MS potential wave functionc gives a possibility to define
every state of the physical quantities.

Let us represent a magnetostatic potential in Eq.~19! as

cn5Aw̃e2gz, ~30!

whereA is a dimensional coefficient andw̃ is a dimension-
less membrane function.

Since the membrane functions of MS modes in an axia
magnetized ferrite cylinder give a complete discrete se
functions~on a waveguide cross section!, the dimensionless
membrane functionw̃ in Eq. ~30! can be written as

w̃5 (
n51

`

anw̃n , ~31!

wherew̃n is a membrane function of MS mode. In a case
a cylindrical MS waveguide,w̃n are characterized by Bess
functions @19#. Because of the orthogonality relation~27!,
one can write

E
S
uw̃nu2ds51. ~32!

A system of functionsw̃n is the orthonormal system of func
tions and, therefore, we have

E
S
uw̃u2ds5 (

n51

`

uanu2. ~33!

Amplitude an shows with what weight the statew̃n is repre-
sented inw̃.

Let the functionw̃ be normalized tounity, that is,

E
S
uw̃u2ds51, ~34!

This condition means that

(
n51

`

uanu251. ~35!

If the normalization condition~34! takes place, the function
uw̃u2 is a probability distribution function for a configuratio
~a waveguide cross section! of a system.

We can introduce a notion of an average quantity~a mean
value! f̄ of a physical valuef @15#:
06661
n

,

e

y
f

f

f̄ 5(
n

uanu2f n , ~36!

where f n is an eigenvalue of a quantityf that satisfies the
operator equation

f̂'w̃n5 f nw̃n . ~37!

The operatorf̂' acts on the waveguide cross section. We c
see that

f̄ 5E
S
w̃* ~ f̂'w̃ !ds. ~38!

Since operatorf̂ is self-conjugated, one can easily obtain

~ f n2 f m!E
S
w̃nw̃m* ds50. ~39!

In particular, f m and f n may be eigenvalues of the norma
ized MS energy.

V. ENERGY EIGENSTATES OF MS MODES IN AN
AXIALLY MAGNETIZED FERRITE CYLINDER

Let us represent the MS potential as a quasimonoch
matic quantity,

c5c~max!~ t !eivt, ~40!

where the amplitudec (max) is a smooth function of a time, so
that

US v21
]

]t Dc~max!U!c~max!, ~41!

Let a part of an infinitely long lossless MS waveguide
restricted by two cross sections placed atz5z1 , z2 . For the
quasimonochromatic MS wave process, one can write
energy balance equation in a waveguide section:

E
z1

z2E
S
¹W i•PW̄ ids dz1

d

dt Ez1

z2E
S
w̄ ds dz50, ~42!

where PW̄ i is the average~on the rf period! power for flow
density along a MS waveguide,¹ i means the longitudina
part of divergence, andw̄ is the average~on the rf period!
density of the energy. Based on Eqs.~4!, ~14!, and~17!, the
first term in the LHS of Eq.~42! is written as

E
z1

z2E
S
¹W i•PW̄ ids dz

5 1
4 ivm0E

z1

z2E
S
¹W i•~c¹W ic* 2c* ¹W ic!ds dz

5 1
4 ivm0E

z1

z2E
S
~c¹̇ i

2c* 2c* ¹̇ i
2c!ds dz, ~43!
2-5
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where¹W i and¹ i
2 are one-dimensional~longitudinal! parts of,

respectively, the gradient and the Laplace operators.
By appropriate change of variables, any system of eq

tions describing oscillations in one-dimensional linear s
tems with distributed parameters may be written as@25#:

Q̂uW 5
]uW

]t
, ~44!

where uW (z,t) is a vector function with componentsu1 ,
u2 , . . . describing system properties andQ̂5Q̂(z) is a dif-
ferential matrix operator. In our case of a MS wavegu
sections, oscillations are described by distribution of MS
tential c with respect to the longitudinalz axis. This distri-
bution is characterized by the second-order one-dimensi
differentional equation. When we rewrite Eq.~44! as

2
i

X
¹ i

2c5
]c

]t
, ~45!

~whereX is a constant quantity! we can see that based o
Eqs.~42! and ~45!, one obtains

1
4 ivm0E

z1

z2E
S
~c¹ i

2c* 2c* ¹ i
2c!ds dz

5
vm0X

4 E
z1

z2E
S
S c

]c*

]t
1c*

]c

]t Dds dz

5
d

dt Ez1

z2E
S
w̄ds dz. ~46!

The average energy of a MS waveguide section can
characterized as

W̄5
wm0X

4 E
z1

z2E
S
cc* ds dz. ~47!

One can see that coefficientX has the dimension@T L22# or
~in SI units! sec/M2. This coefficient may be defined by th
following way.

Since

¹ i
2c2g2c50,

we have from Eq.~45! for MS waveguide moden:

2 iXn

]cn

]t
1gn

2cn550. ~48!

In a case of a pure monochromatic wave process chara
ized by frequencyv(eivt), one has for moden

Xn52
gn

2

v
. ~49!

We define a notion of thenormalized average (on therf
period) MS energy of propagating waveguide mode n(gn
5 ibn), En , as the average~on the rf period! MS energy in a
waveguide section with the unit length and the unit char
06661
a-
-

e
-

al

e

er-

-

teristic cross section. Based on expression~30!, ~31!, ~47!,
and ~49!, one obtains for moden with the unit amplitude
(uanu251)

En5g
m0

4
bn

2, ~50!

where g is the unit dimensional coefficient with the sam
dimension as coefficientA2.

Our definition of an average quantity~mean value! @see
expression~38!# allows to write

Ē5E
S
w̃* ~ F̂'ŵ !ds,

whereF̂' is theoperatorof the normalized average~on the
rf period! MS energy of a propagating waveguide mode. T
following operator equation takes place:

F̂'w̃n5Enw̃n . ~51!

Based on Eq.~18! and taking into account expressio
~31!, we have

m¹'
2 w̃n5bn

2w̃n .

Since En is proportional tobn
2, the operatorF̂' has to be

proportional tom¹'
2 . So we can write

F̂'5Km¹'
2 , ~52!

whereK is a constant value. We have for a propagating mo

K5g
m0

4
. ~53!

For MS moden, we have the differential equation

g
m0m

4
¹'

2 w̃n5Enw̃n . ~54!

Similarly to expression~27!, one can easily obtain from Eq
~54!:

~En2En8!E
S
w̃nw̃n8

* ds50. ~55!

This property of orthonormality of MS waveguide modes
one of the most important characteristics of eigenfunction
the energy spectrum.

The solution forcn may be written as:

cn5Aanw̃ne2 i2@~ uEnu/gm0!z#1/2
, ~56!

similarly to the solution obtained from the one-dimension
time-independent Schro¨dinger equation for the wave func
tion of a free particle@15#. OperatorF̂' acting to the MS
potential resemble the Hamiltonian operator acting to
wave function@15#.
2-6
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A special feature of a MS waveguide structure based
an axially magnetized ferrite cylinder, as it was pointed o
above, is the fact that in the frequency region between
cutoff frequencies,v1 andv2 , we have a complete discret
spectrum of propagating MS modes@19,20#. In accordance
with Eq. ~50!, every propagating mode of a spectrum is ch
acterized by the normalized average~on the rf period! MS
energy. So for given frequencyv, the total normalized aver
age ~on the rf period! MS energy for all the spectrum o
propagating modes can be written as:

Etotal5
m0

4
g(

n51

`

an
2bn

2. ~57!

VI. ENERGY EIGENSTATES OF MS OSCILLATIONS
IN A FERRITE DISK

The energy spectral problem solved for a MS wavegu
is very important for energy spectral problem in MS reso
tors. Let us consider an ‘‘open ferrite disk’’ shown in Fig.
We have four main regions: regionF—a ferrite and regions
I–III—dielectrics. The role of the corner regions is suppos
to be neglected. We describe the MS potential in a ferrite
the Walker equation~15!. Outside a ferrite, we have th
Laplace equation. The boundary conditions at surfaces
disk are the continuity of MS potentialc and the normal
components of magnetic flux densityBW . Further,c→0 at
infinity. For the dc magnetic field directed along thez axis,
the Walker equation in cylindrical coordinates (r,a,z) has a
form:

mS ]2c

]r2 1
1

r

]c

]r
1

1

r2

]2c

]a2D1
]2c

]z2 50. ~58!

Outside a ferrite, we have the similar equation, but w
m51.

In cylindrical coordinates acceptable solutions for t
Walker and Laplace equations in different regions of
structure, are of the form:

c5c~r!c~a!c~z!.

In every region of the structure we have the following so
tion for c ~a!:

c~a!5Cae2 ima, ~59!

where m is an integer~positive or negative!. For different
regions of coordinatez, the functionc(z) has the following
forms:

~1! for regionsF and II (0<z<h):

c~F !~z!5Cz
~F !cos~b~F !z!1Dz

~F !sin~b~F !z!. ~60!

~2! for region I (z>h):

c~ I!~z!5Cz
~ I!e2b~D !~z2h!. ~61!

~3! for region III (z<0):
06661
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c~z!
~ III !5Cz

~ III !eb~D !z. ~62!

In expressions~60!–~62!, b (F) andb (D) are, respectively, the
wave numbers along thez axis in a ferrite and a dielectric
@g (F)5 ib (F),g (D)5b (D)#. It is necessary to point out tha
the solution in regionsF and II (0<z<h) has the form of
expression~60! only for reciprocal~with respect to thez
axis! MSWs. In a case of an axially magnetized cylinder, t
MSWs are reciprocal waves@19#.

To find out the solutions forc~r! we have to substitute
into Eq. ~58! the solution~59! for c ~a! and the solutions
~60!–~62! for c(z). For region I (z>h,r<a) we have

]2c~r!

]r2 1
1

r

]c~r!

]r
1F ~b~D !!22

m2

r2 Gc~r!50. ~63!

The same equation, one has for region III (z<0,r<a). For
regionF(0<z<h,r<a) we have

]2c~r!

]r2 1
1

r

]c~r!

]r
2F ~b~F !!2

m
1

m2

r2 Gc~r!50. ~64!

In region II (0<z<h,r>a), we can write

]2c~r!

]r2 1
1

r

]c~r!

]r
2F ~b~F !!21

m2

r2 Gc~r!50. ~65!

One can see that Eq.~64! becomes the Laplace equation
(b (F))2/m is replaced by (b (F))2. Equations~64! and ~65!
correspond to equations obtained and analyzed by Jo
and Schlo¨mann for MSWs in a long, axially magnetized cy
inder @19#.

In the Bessel equation~63!, b (D) is real and for the prob-
lem under investigation, onlyJm(b (D)r)—the Bessel func-
tion of real argument is a physically acceptable solution.
for region I we have

c~ I!~r!5Cr
~ I!Jm~b~D !r!. ~66!

A similar expression, we have for region III:

c~ III !~r!5Cr
~ III !Jm~b~D !r!. ~67!

A physically acceptable solution for Eq.~64! is possible only
for m,0. In this case, we have

c~F !~r!5Cr
~F !Jm„b

~F !~2m!1/2r…. ~68!

For Eq.~65! one obtains

c~ II !~r!5Cr
~ II !Km~b~F !r!, ~69!

whereKm is the Bessel function of an imaginary argumen
Now let us impose the boundary conditions on the pla

z50 andz5h. We have

c~ I!~z!5c~F !~z!uz5h ,
]c~z!

~ I!

]z
5

]c~z!
~F !

]z
U

z5h

~70!

and
2-7
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c~F !~z!5c~ III !~z!uz50 ,
]c~z!

~F !

]z
5

]c~z!
~ III !

]z
U

z50

. ~71!

The boundary conditions~70!, ~71! together with solutions
~60!–~62! give a system of homogeneous equations for
coefficients. The condition of equality of a determinant
this system of equations to zero leads to the following tr
scendental equation:

tan~b~F !h!52
2A2m

11m
. ~72!

Equation~72! was obtained based on the relation

b~D !5
1

A2m
b~F !, ~73!

derived from Eq.~58!.
At the lateral surface (r5a,0<z<h) one should have the

continuity conditions for potentialc and for the radial com-
ponent of magnetic flux densityBW . Taking into account ex-
pression~17! for tensormJ and making necessary vector tra
sitions from rectangular to cylindrical coordinates, o
obtains for the interior of a ferrite

Br5m0~mHr1 imaHa!5m0S 2m
]c

]r
2 ima

1

r

]c

]a D ,

~74!

whereHr andHa are the radial and circumferential comp
nents of the rf magnetic field.

The continuity conditions forBr and c on the boundary
r5a then leads to the following equation

~2m!1/2
Jm8

Jm
1

Km8

Km
2

mam

ub~F !ua
50, ~75!

where we denoted

Jm[Jm„ub~F !u~2m!21/2a…; Km[Km~ ub~F !ua!,

Jm8 [
]Jm„ub~F !u~2m!21/2r…

]r U
r5a

;

Km8 [
]Km~ ub~F !ur!

]r U
r5a

. ~76!

To obtain eigenfrequencies of a ferrite disk resonator
has to solve a system of two Eqs.~72! and ~75! for given
values ofh, a, andm. The solutions in forms of relations~60!
and ~66!–~68! are correct only form,0. It means that the
admissible frequency region is restricted asv1<v<v2 .

In our model of an ‘‘open ferrite disk,’’ the MS potentia
distribution with respect to thez axis can be characterized b
equations similar to Eq.~45!, but with different coefficients
X in ferrite and delectric regions. By analogy with express
~46!, one obtains
06661
e
f
-

e

n

vm0

4 E
S
FX~D !E

2`

0 S c*
]c

]t
1c*

]c

]t Ddz1X~F !E
0

h

3S c*
]c

]t
1c*

]c

]t Ddz1X~D !E
h

`

3S c
]c*

]t
1c*

]c

]t DdzGds

5
d

dt ES
F E

2`

0

w̄1
~D !dz1E

0

h

w̄~F !dz1 È0

w̄2
~D !dzGds.

~77!

The average~on the rf period! MS energy of a ferrite
resonator can be characterized as

W̄5
vm0

4 E
S
FX~D !E

2`

0

cc* dz1X~F !E
0

h

cc* dz

1X~D !E
h

`

cc* dzGds. ~78!

We represent a resonance mode in a ferrite disk as
lows:

cpq5Aj̃p~z!w̃q~r,a!, ~79!

wherej̃ andw̃ are piecewise continuous dimensionless fun
tions that are defined based on Eqs.~60!–~62! and~66!–~69!.
For functionw̃q the normalization condition~32! takes place.
At resonance frequencyvpq @found based on Eqs.~72! and
~75!#, one can write the normalization condition for functio
j̃p taking into account expression~29!:

E
0

h

mpqu j̃pu2dz1E
2`

0

u j̃pu2dz1E
h

`

u j̃pudz51, ~80!

where we denotedmpq[m(vpq).
For resonance frequencyvpq , one has for coefficients

X(D) andX(F) in expression~78!:

Xpq
~D !5

~bpq
~D !!2

vpq
~81!

and @see expression~73!#

Xpq
~F !5

~bpq
~F !!2

vpq
52mpq

~bpq
~D !!2

vpq
. ~82!

Here we denotedbpq[b(vpq).
Based on the normalization conditions~32! and ~80!, we

introduce the notion of thenormalizedaverage~on the rf
period! energy of MS oscillations. For a ferrite disk reson
tor with a unit characteristic volume, one has the normaliz
energy of the MS oscillation with the unit amplitude:

Epq5g
m0~bpq

~D !!2

4
. ~83!
2-8
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Here expression~78!, ~81!, and~82! have been used;g is the
unit dimensional coefficient.

Based on expression~83! and taking into account Eq.~18!
in a ferrite region and the Laplace equation outside a ferr
one can obtain

g
m0

4
¹'

2 w̃q5Epqw̃q . ~84!

It means that the operator equation

F̂'w̃q5Epqw̃q ~85!

with

F̂'5g
m0

4
¹'

2 ~86!

takes place.
The energy orthogonality condition for MS oscillations

a ferrite disk resonator obtained from Eq.~84! has a form:

~Epq2Epq8!E
S
w̃qw̃q8

* ds50. ~87!

Our analysis of energy eigenstates of MS oscillations i
ferrite disk is valid only when the wave-number~with re-
spect toz axis! spectrum of ‘‘thickness modes’’j̃p(z) @see
expression~79!# is ‘‘rare’’ enough compared to the ‘‘dense
spectrum of ‘‘in-plane modes’’w̃q(r,a). This situation re-
ally takes place in our case of a ferrite disk with a sm
thickness to diameter ratio (h/2a!1). So, for the main
‘‘thickness mode’’ one has anenergetic spectrumdue to the
‘‘in-plane mode’’ spectrum.

It is also necessary to call the reader’s attention to a v
important fact that, in accordance with Joseph and Sc¨-
mann analysis@19#, one has different absolute values
wave numbers for the left-hand and right-hand circularly p
larized MS waves in a ferrite rod. This becomes clear fr
Eq. ~75! that is dependent on a sign of integerm. In our
analysis, this fact leads to differences of energies for
left-hand and right-hand circularly polarized MS oscillatio
in a ferrite disk.

VII. DISCUSSION

We have shown in this paper that in a MS wavegu
structure based on an axially magnetized ferrite cylind
propagating modes are characterized by quantities of the
malized average~on the rf period! MS energy with the or-
thogonality property of eigenfunctions in the energy sp
trum. With the use of a simple model of an ‘‘open ferri
disk,’’ we have shown in this paper that magnetostatic os
lations in a normally magnetized sample can be describe
eigenfunctions with stationary energy eigenstates. These
sults of our theoretical analysis show that propagating
modes and MS oscillations actually can diagonalize the m
netic energy.

In classical waveguide problems~for electromagnetic-
wave@22# and, in particular, MS-wave waveguides@20,24#!,
06661
e,

a

l
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-

e
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or-

-
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re-
S
g-

an excitation of normal modes by the external~given! cur-
rents and charges was analyzed. In particular, the traditio
technique describes an excitation of MS-wave wavegui
due to electric current transducers@20,24#. In @21#, we con-
sidered another type of excitation: the MS mode excitat
due to the external~given! rf magnetic field. The excitation
problem analyzed in@21# is not, however, so well justified
One has only the homogeneous~Walker! equation for MS
potential, but there are no such kind of a nonhomogene
equation with the external rf magnetic field in the right-ha
side. Now, based on the results of this paper, one ha
possibility to consider the MS mode excitation as a tim
dependent perturbation of the energy spectrum in an axi
magnetized ferrite cylinder.

Our analysis of energy eigenstates of MS oscillatio
gives a possibility to explain a multiresonance spectrum
absorption peaks, one can experimentally observe in the
fect of coupling between the rf magnetic field and very sm
ferrite-disk resonators~particles!. It becomes clear now tha
the observed multiresonance peaks are due to portion abs
tion of energy of the exciting rf magnetic field. In our anal
sis, we used the mathematical apparatus based on the th
of linear operators similar to the quantum mechanical ap
ratus.

With respect to the problem under consideration, it is i
portant to keep in mind the fact that when in classical el
trodynamics structures the spectral problems are chara
ized by wavenumbersand frequencies as the spectra
parameters, in quantum mechanics structures there areen-
ergy eigenstatesas the spectral parameters.

With use of the spectral method~with energy eigenstates!
we are able now to develop the perturbation theory for M
oscillations. These should be time-independent perturbat
~to take into account the role of nonuniform internal dc ma
netic field! and time-dependent perturbations~to consider ex-
citation by the rf magnetic field!. Similar to the quantum
mechanical problems@15#, the perturbation method for MS
oscillations constitutes a separate treatment and should
subject for future efforts.

Ferrite disk, contrary to a ferrite sphere, has cylindric
symmetry. Such a type of symmetry characterizes the dip
field similarly to the field of a two-atomic molecule. So, M
oscillations in a small ferrite-disk resonator can be similar
dynamical processes that take place in a two-atomic m
ecule. An artificial magnetic medium composed by small M
ferrite-disk resonators can bear a resemblance to a para
netic material. It is interesting to note that a bianisotrop
particle based on a ferrite-disk resonator with a special-fo
surface metallization, being considered as a combination
two ~electric and magnetic! dipoles, has symmetry propertie
similar to the properties one can observe in a case of elem
tary particles: a combination of change conjugation~C!, par-
ity ~P!, and time reversal~T! ~the so-called CPT-invariance!
@16#.

One can see that one-dimensional wave equation~45!
contains a first derivative with respect to time, and a sec
derivative with respect to the space coordinate. So there i
asymmetry between the time and space coordinates
therefore, Eq.~45! is not invariant with respect to the Lor
2-9
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entz transformations. The reason of this asymmetry is
the magnetostatic wave equations in a ferrite, being resu
in the ‘‘distorted’’ Maxwell equations written for irrotationa
magnetic and rotational electric fields, describe ‘‘slow
wave processes with velocities much smaller than the ve
ity of electromagnetic waves at the same frequency@20,24#.
Similarly, the Schro¨dinger wave equation is nonrelativistic
it is suitable only for particles whose velocity is muc
smaller than the velocity of light@15#.

VIII. CONCLUSION

At present, we are witnesses to a very strong interes
electromagnetic complex~anisotropic, chiral, bianisotropic!
materials. Artificial composite materials play an importa
role in attempts to realize new electromagnetic materials
becomes clear, however, that to have such materials
properties that satisfy the principles of macroscopic elec
dynamics, two levels of consideration, microscopic and m
roscopic, have to be used@5,26–28#. Microscopic properties
of natural electromagnetic materials are based on quan
mechanical theory. In this paper we have shown that so
particles inartificial composite materials can be consider
microscopically as ‘‘artificial molecular structures’’ with
t.

-

06661
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ed
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properties characterized by energy eigenstates of oscillati
Similar to the theory of natural condense media@26,27#, fur-
ther development of the theory of artificial dense materi
should be focused on the energetic-spectrum properties
system of artificial molecules.

New definite physical results concerning the subject
this paper arise from recent experimental study of spectr
ferrite resonators with special-form surface electrod
@29,30#. An adequate description of the observed regu
multiresonance spectra of magnetoelectric oscillations
cited by the external rf electric, magnetic, and combin
(electric1magnetic) fields, should, certainly, be given bas
on thequantized picturewith a proper consideration of th
magnetostatic-potential functions as the probability fun
tions.
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